Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

Automation of information distribution in adaptive electronic document management systems using machine learning

https://doi.org/10.23947/2687-1653-2020-20-4-430-436

Abstract

Introduction. Electronic document management systems (EDMS) are used to store, process and transmit large amounts of information. Automation of these processes is a challenge that requires a comprehensive solution. Its solution willreduce the time and material costs for design and make the transition to a more advanced, adaptive EDMS. The paper is devoted to the development of new methods for automating the process of distributing information in the EDMS. The work objective is to improve the accuracy of the information distribution in the EDMS through moving from analytical or algorithmic solutions to the use of new methods based on machine learning technologies. The application of neural networks in the furtherance of this purpose will also improve the efficiency of software development through automating the analysis and processing of information.

Materials and Methods. A new method of the automated information distribution based on machine learning technologies including a mathematical description of the information distribution rules is proposed. The formulated list of conditions for the information distribution provides the implementation of software based on neural networks for solving the problem of automatic data distribution in the EDMS.

Results. The method of automated information distribution has been tested on the example of the EDMS subject area when solving the problem of analyzing the correctness of information entered by the user. In the course of experimental studies, it was found that the proposed method, based on machine learning technologies, provides better accuracy (8 % higher) and is more efficient (in accordance with the Jilb metrics and cyclomatic complexity).

Discussion and Conclusions. The results obtained confirm the efficiency and accuracy of the method proposed. The presented results can be used to automate the processes of distribution and verification of information in adaptive EDMS, as well as in other information systems. Based on the method developed, it is also possible to solve connected problems: search for duplicates and similar documents, classification and placement by file categories.

About the Author

A. D. Obukhov
Tambov State Technical University
Russian Federation


References

1. Кузнецова, Е. В. Актуальные проблемы электронного документооборота в органах власти / Е. В. Кузнецова // Вопросы управления. — 2013. — №. 4. — С. 73-77.

2. Zhong, R. Y. Intelligent manufacturing in the context of industry 4.0: a review / R. Y. Zhong [et al.] // Engineering. — 2017. —Vol. 3 (5). — P. 616-630. DOI: 10.1016/J.ENG.2017.05.015

3. Xu, D. Enhancing e-learning effectiveness using an intelligent agent-supported personalized virtual learning environment: An empirical investigation / D. Xu [et al.] // Information & Management. — 2014. — Vol. 51 (4). — P. 430-440. DOI:10.1016/j.im.2014.02.009

4. Кузнецов, С. Д. Распределенные горизонтально масштабируемые решения для управления данными / С. Д. Кузнецов, А. В. Посконин // Труды Института системного программирования РАН. — 2013. — Т. 24. — С. 327-358.

5. Сравнительный анализ методов машинного обучения для решения задачи классификации документов научно-образовательного учреждения / М. Н. Краснянский, А. Д. Обухов, Е. М. Соломатина, А. А. Воякина // Вестник ВГУ, Серия : Системный анализ и информационные технологии. — 2018. — № 3. — С. 173-182.

6. Karampidis, K. File type identification-computational intelligence for digital forensics / K. Karampidis, G. Papadourakis // Journal of Digital Forensics, Security and Law. — 2017. — Vol. 12 (2). — P. 6. DOI: 10.15394/jdfsl.2017.1472

7. Kim, D. Multi-co-training for document classification using various document representations: TF-IDF, LDA, and Doc2Vec / D. Kim [et al.] // Information Sciences. — 2019. — Vol. 477. — P. 15-29.

8. Zheng, J. Hierarchical neural representation for document classification / J. Zheng [et al.] // Cognitive Computation. — 2019. — Vol. 11 (2). — P. 317-327. DOI:10.1007/s12559-018-9621-6

9. Bodstrom, T. State of the art literature review on network anomaly detection with deep learning / T. Bodstrom, T. Hamalainen // In book: Internet of Things, Smart Spaces, and Next Generation Networks and Systems. Springer, Cham, 2018. — P. 64-76. DOI: 10.1007/978-3-030-01168-0_7

10. Datta, S. Near-Bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs / S. Datta, S. Das // Neural Networks. — 2015. — Vol. 70. — P. 39-52. DOI: 10.1016/j.neunet.2015.06.005

11. Irolla, P. The duplication issue within the Drebin dataset / P. Irolla, A. Dey // Journal of Computer Virology and Hacking Techniques. — 2018. — Vol. 14 (3). — P. 245-249. DOI: 10.1007/s11416-018-0316-z

12. Goldberg, Y. Neural network methods for natural language processing / Y. Goldberg // Synthesis Lectures on Human Language Technologies. — 2017. — Vol. 10 (1). — P. 1-309. DOI: 10.2200/S00762ED1V01Y201703HLT037

13. Beleites, C. Sample size planning for classification models / C. Beleites [et al.] // Analytica chimica acta. — 2013. — Vol. 760. — P. 25-33. DOI:10.1016/j.aca.2012.11.007

14. Obukhov, A. Algorithm of adaptation of electronic document management system based on machine learning technology / A. Obukhov, M. Krasnyanskiy, M. Nikolyukin // Progress in Artificial Intelligence. — 2020. — Vol. 9. — P. 287-303. DOI: 10.1007/s13748-020-00214-2

15. Bazgir, O. Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks / O. Bazgir [et al.] // Nature Communications. — 2020. — Vol. 11 (1). — P. 1-13. DOI: 10.1038/s41467-020-18197-y

16. Luo, A. A Structural Complexity Metric Method for Complex Information Systems / A. Luo [et al.] // JSW. — 2019. — Vol. 14 (7). — P. 332-339. DOI: 10.17706/jsw.14.7.332-339

17. Смирнов, А. В. Методы оценки и управления качеством программного обеспечения / А. В. Смирнов // Известия СПбГЭТУ «ЛЭТИ». — 2019. — № 2. — С. 20-25.


Review

For citations:


Obukhov A.D. Automation of information distribution in adaptive electronic document management systems using machine learning. Advanced Engineering Research (Rostov-on-Don). 2020;20(4):430-436. https://doi.org/10.23947/2687-1653-2020-20-4-430-436

Views: 766


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)